On the error term of symmetric Gauss-Lobatto quadrature formulae for analytic functions

نویسندگان

  • David Hunter
  • Geno P. Nikolov
چکیده

Gauss-Lobatto quadrature formulae associated with symmetric weight functions are considered. The kernel of the remainder term for classes of analytic functions is investigated on elliptical contours. Sufficient conditions are found ensuring that the kernel attains its maximal absolute value at the intersection point of the contour with either the real or the imaginary axis. The results obtained here are an analogue of some recent results of T. Schira concerning Gaussian quadratures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Gautschi's conjecture for generalized Gauss-Radau and Gauss-Lobatto formulae

Recently, Gautschi introduced so-called generalized Gauss-Radau and Gauss-Lobatto formulae which are quadrature formulae of Gaussian type involving not only the values but also the derivatives of the function at the endpoints. In the present note we show the positivity of the corresponding weights; this positivity has been conjectured already by Gautschi. As a consequence, we establish several ...

متن کامل

On Some Gauss and Lobatto Based Integration Formulae

1. Introduction. The economy of the Gaussian quadrature formulae for carrying out numerical integration is to some extent reduced by the fact that an increase in the order of the formulae makes no use of previous integrand evaluations. Kronrod [1] has shown how the Gauss formula of degree 2n — 1 can be extended to one of degree 3rc + 2 by making use of the original n Gauss points and an additio...

متن کامل

Error bounds for Gauss-Tur'an quadrature formulae of analytic functions

We study the kernels of the remainder term Rn,s(f) of GaussTurán quadrature formulas ∫ 1 −1 f(t)w(t) dt = n ∑

متن کامل

Some Generalized Error Inequalities and Applications

We present a family of four-point quadrature rule, a generalization of Gauss-two point, Simpson’s 3/8, and Lobatto four-point quadrature rule for twice-differentiable mapping. Moreover, it is shown that the corresponding optimal quadrature formula presents better estimate in the context of four-point quadrature formulae of closed type. A unified treatment of error inequalities for different cla...

متن کامل

Higher Order Triangular Finite Elements with Mass Lumping for the Wave Equation

Solving the wave equation by a C o finite element method requires to mass-lump the term in time of the variational f6rmulation in order to avoid the inversion of a n-diagonal symmetric matrix at each time-step of the algorithm. One can easily get this mass-lumping on quadrilateral meshes by using a h-version of the spectral elements, based on Gauss-Lobatto quadrature formulae but the equivalent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 69  شماره 

صفحات  -

تاریخ انتشار 2000